

Welcome to data-migrator’!

data-migrator is database transformation in a pipes and filter, declarative kind of way, Python/Django style.

Data transformation is an important process in software development when architectures upgrade and data has to move along. This requires fast and easy restructuring of data in a repetitive way. Quite quickly ad-hoc scripts or transfer data, upgrade it in sql second is not flexible enough. For those cases data-migrator is an answer.

Once you ‘ve installed data-migrator, we recommend reading the

	Introduction first,

	Take a look at the Example

	after that continue with the Tutorial

Contents

Contents:

	Introduction

	Example

	Installation
	Using pip (or ...)

	Using a Source Distribution

	Using the Github Repository

	Tutorial
	Getting Started

	Concepts
	The Scan Emit Loop

	API Reference
	Model class reference

	Meta class reference

	Model field reference

	Contributor Code of Conduct

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Data transformation is a classic problem in compute, but underestimated in modern software development. Everybody working with persistent data will be involved somehow in restructuring existing data in databases or files while systems evolve. A wide range of practices exist ranging from ad-hoc scripts to sophisticated ETL processes.
When we upgraded an existing modules at Schuberg Philis moving from a mono-lithical application to a microservice architecture, we found ourselves in a position to write some ad-hoc python scripts. Table by table the transformation was done, simply by exporting existing in csv’s and with some simple python scripts - a single read/print loop - generate new INSERT statements.

How hard can it be, just some basic processing and statement emitting. But soon we found ourselves cleaning/fixing data, generating multiple records out of single rows. The scripts became unreadable and hard to maintain. That is when we came up with the idea of applying a more declarative approach.
And we were pretty charmed by the Django model approach. Soon after a standardized system based on a declarative definitions originated.

This package is a simple alternative to doing ad-hoc scripts. It is easy to learn, easy to extend and highly expressive in building somewhat more complex transformation. Think of for example:

	renaming, reordering columns

	changing types

	lookup data, advanced transformations

	generating permission records in separate tables for main data

Now see the example and move on to the installation

Example

Core of data-migrator is the unix pipe and filter paradigm to build data transformers. Source data is read from the database or some other source. It is piped to a filter written in data-migrator which emits for example SQL insert statements, after which this can be piped to a target client.

The most simple single datapump in mysql for example is written like:

$ mysqldump -u [uname] -p[pass] source_db table | mysql target_db

In this case mysqldump will export the table as SQL statements and the new database will process them.
Now if you want to do something extra and repeatable with respect to the data, you could use all kinds of unix filtering with sed, awk, or other favorite poison.
Hard to imagine what Pythonista’s would do especially if extra columns or something are needed. The basic packages are quite strong and one would setup something like:

$ mysql source_db -E 'select * from table' -B | python my_filter.py | mysql target_db

With my_filter.py written as something like:

import sys, csv

reader = csv.DictReader(sys.stdin)

for row in reader:
 print 'INSERT INTO `table` (a,b) VALUES ("%(a)s", %(b)s)' % row

To see the options for manipulation is left as an exercise to the reader, but do accept that as soon things become just a little more complex (think: splitting in two tables, column reverses, renaming of columns, mixing, joining, filtering, transforming), more declarative support is helpful. That is why we came up with data-migrator. One could simply replace this with:

from data_migrator import models, transform
from data_migrator.emitters import MySQLEmitter

def parse_b(v):
 if v == 'B':
 return 'transformed_B'
 else:
 return v.lower()

class Result(models.Model):
 id = models.IntField(pos=0) # keep id
 uuid = models.UUIDField() # generate new uuid4 field
 # replace NULLs and trim
 a = models.StringField(pos=1, default='NO_NULL', max_length=5, null='NULL', replace=lambda x:x.upper())
 # parse this field
 b = models.StringField(pos=2, parse=parse_b, name='my_b')

 class Meta:
 table_name = 'new_table_name'

django-esc like creating and saving (to a manager)
Result(a='my a', b='my b').save()

if __name__ == "__main__":
 transform.Transformer(models=[Result], emitter=MySQLEmitter).process()

 assert(len(Result.objects) > 1)

And have a nice self explaining transformer which will generate something like:

-- transformation for Result to table new_table_name
-- input headers: id,a,b
-- stats: in=10,dropped=0,out=10

SET SQL_SAFE_UPDATES = 0; -- you need this to delete without WHERE clause
DELETE FROM `new_table_name`;
ALTER TABLE `new_table_name` AUTO_INCREMENT = 1;

INSERT INTO `new_table_name` (`id`, `uuid`, `a`, `my_b`) VALUES (0, "ac7100b9-c9ad-4069-8ca5-8db1ebd36fa3", "MY A", "my b");
INSERT INTO `new_table_name` (`id`, `uuid`, `a`, `my_b`) VALUES (1, "38211712-0eb2-4433-b28f-e3fe33492e7a", "NO_NULL", "some value");
INSERT INTO `new_table_name` (`id`, `uuid`, `a`, `my_b`) VALUES (2, "a3478903-aed9-462c-8f47-7a89013bc6ea", "CHOPP", "transformed_B");

Installation

Using pip (or ...)

	Category:	Stable version

	Precondition:	pip [https://pypi.python.org/pypi/pip] (or setuptools [https://pypi.python.org/pypi/setuptools]) is installed

Execute the following command to install data-migrator [https://pypi.python.org/pypi/data-migrator] with pip [https://pypi.python.org/pypi/pip]:

pip install data-migrator

To update an already installed data-migrator [https://pypi.python.org/pypi/data-migrator] version, use:

pip install -U data-migrator

As an alternative,
you can also use easy_install [https://pypi.python.org/pypi/setuptools] to install data-migrator [https://pypi.python.org/pypi/data-migrator]:

easy_install data-migrator # CASE: New installation.
easy_install -U data-migrator # CASE: Upgrade existing installation.

Hint

See also pip related information [https://pip.pypa.io/en/latest/installing.html] for installing Python packages.

Using a Source Distribution

After unpacking the data-migrator [https://pypi.python.org/pypi/data-migrator] source distribution,
enter the newly created directory “data-migrator-<version>” and run:

python setup.py install

Using the Github Repository

	Category:	Bleading edge

	Precondition:	pip [https://pypi.python.org/pypi/pip] is installed

Run the following command
to install the newest version from the Github repository [https://github.com/schubergphilis/data-migrator]:

pip install git+https://github.com/schubergphilis/data-migrator

To install a tagged version from the Github repository [https://github.com/schubergphilis/data-migrator], use:

pip install git+https://github.com/schubergphilis/data-migrator@<tag>

where <tag> is the placeholder for an existing tag [https://github.com/schubergphilis/data-migrator/tags].

When running from the repository it is adviced to run in developer mode:

pip install -e .

This allows to work on the code while using the library. Be sure to make that pull-request ;-)

Tutorial

	Getting Started

Getting Started

First, install data-migrator.

Now create a new directory with your migration scripts. Your milage may very, built
for here we assume you have client access to source data, spitting out a csv in some
form and client access to a target database. To automate and make it repetitive, just
use make, we add some Makefile-foo here but do not worry:

TARGETS = table
OPTIONS ?=-p 2 --debug
OUT_DIR ?= results

TABLE_QRY='SELECT t.* FROM table LIMIT 0,100'

default: clean install all

all: $(TARGETS)

install:
 pip install data-migrator

clean:
 @rm -rf $(OUT_DIR)
 @find . -name *.pyc -delete

$(OUT_DIR)/%.sql: | $(OUT_DIR)
 ssh [SOURCE_HOST] "sudo mysql connect -e $($(@F)) -B" | python transform_$*.py $(OPTIONS) -o $(OUT_DIR)

$(TARGETS):%:$(OUT_DIR)/%.sql

$(OUT_DIR):
 mkdir -p $@

upload:
 ssh [TARGET_HOST] "sudo mysql [TARGET_DB]" < $(OUT_DIR)/table.sql

See that we use a simple query and extract the first 100 lines. The rest of the magic of the Makefile is to
separate the extraction from the loading, and allow to easily extend the script with more tables and source.
Note that in this case we are defining the extract query in the makefile, and we are using sudo rights to
extract and upload the data. You might want to have an opinion about that.

We now have the ground work for extracting a table, transforming it and loading it. Next step is to build the filter
and transform the data into something the target database can have. Going back to the example we build a simple
transformer:

from data_migrator import models, transform
from data_migrator.emitters import MySQLEmitter

def parse_b(v):
 if v == 'B':
 return 'transformed_B'
 else:
 return v.lower()

class Result(models.Model):
 id = models.IntField(pos=0) # keep id
 uuid = models.UUIDField() # generate new uuid4 field
 # replace NULLs and trim
 a = models.StringField(pos=1, default='NO_NULL', max_length=5, null='NULL', replace=lambda x:x.upper())
 # parse this field
 b = models.StringField(pos=2, parse=parse_b, name='my_b')

 class Meta:
 table_name = 'new_table_name'

django-esc like creating and saving (to a manager)
Result(a='my a', b='my b').save()

if __name__ == "__main__":
 transform.Transformer(models=[Result], emitter=MySQLEmitter).process()

 assert(len(Result.objects) > 1)

And have a nice self explaining transformer which will generate something like:

-- transformation for Result to table new_table_name
-- input headers: id,a,b
-- stats: in=10,dropped=0,out=10

SET SQL_SAFE_UPDATES = 0; -- you need this to delete without WHERE clause
DELETE FROM `new_table_name`;
ALTER TABLE `new_table_name` AUTO_INCREMENT = 1;

INSERT INTO `new_table_name` (`id`, `uuid`, `a`, `my_b`) VALUES (0, "ac7100b9-c9ad-4069-8ca5-8db1ebd36fa3", "MY A", "my b");
INSERT INTO `new_table_name` (`id`, `uuid`, `a`, `my_b`) VALUES (1, "38211712-0eb2-4433-b28f-e3fe33492e7a", "NO_NULL", "some value");
INSERT INTO `new_table_name` (`id`, `uuid`, `a`, `my_b`) VALUES (2, "a3478903-aed9-462c-8f47-7a89013bc6ea", "CHOPP", "transformed_B");

There you are, you have setup your first pipeline. Execute this by running:

$ make table # extract the data from the database, transform it
$ make upload # load it into the database

You can lookup the intermediate result by viewing the generated sql results/new_table_name.sql. data-migrator does not
focus on the database schema (yet!) so the table is expected to exist in the target system. By default the system
is wiping the data, not recreating the table. If you have issues with the python libraries, run make install do
install the library from this makefile.

Now go ahead and add more fields. See fields reference for more details about the options of the fields.

Concepts

	The Scan Emit Loop

The Scan Emit Loop

Core in the data-migrator is the declarative definition of the target model. Indeed in a django-esc way. Columns of the target table are defined as fields and each field has many settings. The Field is a definition of what to perform scanning, transforming and emitting the record. Output is abstracted into an extensible set of output writers. The whole is controlled with a standard transformer engine.

The scan-emit loop is the basis the data-migrator. Once everything is setup, by default the transformer will read stdin and send every CSV row to the model for scanning. Out of the box the fields define a scan loop:

	select the specified column from the row.

	null test if not allowed and replace by default.

	validate the input (if validator is provided).

	parse the input (if parser is provided).

	store as native python value (aka NULL=>None).

Once all fields are parsed, the resulting object can be checked for None or uniqueness. It can be dropped or the filter can fail because of violations. This are all declarative settings on the Model through the Meta settings.
Otherwise the record is saved and (accessible by Model.objects.all()) is emitted. This is based on a dedicated emitter, like the MySQL INSERT statement generator. Emitting provides some of the following features:

	trim if string and max_length is set (note the full string is stored in the intermediate object!).

	validate the output (if output_validate is provided).

	replace the value with some output string (if provided).

	write in a dedicated format as dictated by the emitter.

API Reference

	Model class reference

	Meta class reference

	Model field reference

Model class reference

This document covers features of the Model class.

Attributes

objects

	
Model.objects

	Each non-abstract Model class must have a
Manager instance added to it.
Data-migrator ensures that in your model class you have at least a
default SimpleManager specified. If you don’t add your own Manager,
Django will add an attribute objects containing default
SimpleManager instance. If you add your own
Manager instance attribute, the default one does
not appear.

Methods

scan(row)

	
Model.scan(row)

	

Take a row and set values based on the field definitions. All fields in the
field definitions are parsed. If field index does not exist an IndexError will be
raised.

Returns self so it can be chained

save()

	
Model.save()

	

Save this object and add it to the list.

Returns self so it can be chained

emit(escaper)

	
Model.emit(escaper=None)

	

Emit the existing object, apply all field translations. Might raise exceptions due to
validations.

Returns a dict with the translated values

Meta class reference

This document covers features of the Meta class. The meta class
defines model specific settings.

Note

Technically, Meta is just a container and forwarded to data-migrator.models.options.Options

Field options

The following arguments are available to all field types. All are optional.

drop_if_none

	
Meta.drop_if_none

	

Is a list of field names as defined. If set data-migrator will check if fields are not None
and drop if one of the columns is.

Any field listed in this attribute is checked after scanning and just before save-ing.

Note

Note that only NullXXXFields actually can be None after scanning and parsing. Non
Null fields are set to their default value.

drop_non_unique

	
Meta.drop_non_unique

	

If True, data-migrator will drop values if the column uniqueness check fails
(after parsing). Default is False.

Any field can be defined as a unique column. Any field set so, is checked after
scanning and just before save-ing.

emitter

	
Meta.emitter

	

If set, data-migrator will use this emitter instead of the default emitter.

fail_non_unique

	
Meta.fail_non_unique

	

If True, data-migrator will fail as a whole if the column uniqueness check fails
(after parsing). Default is False.

Any field can be defined as a unique column. Any field set so, is checked after
scanning and just before save-ing.

fail_non_validated

	
Meta.fail_non_validated

	

If True, data-migrator will fail as a whole if the column validation check fails
(after parsing). Default is False.

Any field can have its own validator, this is a rough method to prevent bad data from
being transformed and loaded.

file_name

	
Meta.file_name

	

If set, data-migrator will use this as file_name for the emitter instead of the default
filename based on table_name.

table_name

	
Meta.table_name

	

If set, data-migrator will use this as table_name for the emitter instead of the default
tablename based on model_name.

prefix

	
Meta.prefix

	

If set, data-migrator will use this list of statements as a preamble in the generation of
the output statements. By default an emitter uses this to clear the old records.

remark

	
Meta.remark

	

If set, data-migrator will use this as the remark attribute in the Model, default=’remark’.
Use this for example if you have a remark field in your model and need to free the keyword.

manager

	
Meta.manager

	

If set, data-migrator will use this as the manager for this model. This is useful if
the transform method needs to be overridden.

Model field reference

This document contains all API references of :class: Field including the
field options and field types data-migrator offers.

Note

Technically, these models are defined in data-migrator.models.fields, but
for convenience they’re imported into data-migrator.models; the standard
convention is to use from data-migrator import models and refer to fields as
models.<Foo>Field

Field options

The following arguments are available to all field types. All are optional.

pos

	
Field.pos

	

If positive or zero this denotes the column in the source data to select and store in
this field. If not set (or negative) the fields is interpreted as not selecting just
a column from the source but to take the full row in the parse function

name

	
Field.name

	

The name of this field. By default this is the name provided in the model declaration.
This attribute is to replace that name by the final column name.

default

	
Field.default

	

The default value to use if the source column is found to be a null field or if the
parse function returns None. This attribute has default values for Fields that are not
Null<xxx>Fields. For example NullStringField has both NULL and empty string as empty
value. StringField only has empty string as empty value. With this field it can be
changed to some other standard value. Consider a Country field as string and setting it
to the home country by default.

null

	
Field.null

	

If set it will match the source column value and consider this a None value. By
default this attribute is set to None. Note that for none Null fields None
will be translated to default

replace

	
Field.replace

	

If set this is a pre-emit replacement function. This for example could be used to
insert replacement lookup select queries. Adding more indirection into the data
generation.

replace

	
Field.replace

	

If set this is a pre-emit replacement function. This for example could be used to
insert replacement lookup select queries. Adding more indirection into the data
generation.

parse

	
Field.parse

	

If set this is the parsing function to replace the read value into something to use
further down the data migration. Use this for example to clean phonenumbers, translate
country definitions into alpha3 codes, or to translate ID’s into values based on a
separately loaded lookup table.

validate

	
Field.validate

	

Expects a function that returns a boolean, and used to validate the input data.
Expecting data within a range or a specific format, add a column validator here.
Raises ValidationException if set and false.

max_length

	
Field.max_length

	

In case of StringFields use this to trim string values to maximum length.

unique

	
Field.unique

	

If True, data-migrator will check uniqueness of intermediate values
(after parsing). Default is False.

In relationship with the default manager this will keep track of values for this
field. The manager can raise exceptions if uniqueness is violated. Note that it
is up to the manager to either fail or drop the record if the exception is raised.

Note

Use this with HiddenField and a row parse function if some combination of
fields (aka a compound key) is expected to be unique and not to be violated.

validate_output

	
Field.validate_output

	

A pre-emit validator used to scan the bare output and raise exceptions if output is
not as expected

creation_order

	
Field.creation_order

	

An automatically generated attribute used to determine order of specification, and
used in the emitting of dataset

Field types

BooleanField

	
class data-migrator.models.BooleanField(**options)

	

a bool that takes any cased permutation of true, yes, 1 and translates this into
True or False otherwise.

IntField

	
class data-migrator.models.IntField(**options)

	

a field that accepts the column to be integer.

NullIntField

	
class data-migrator.models.NullIntField(**options)

	

a field that accepts the column to be integer and can also be None, which is not
the same as 0 (zero).

HiddenField

	
class data-migrator.models.HiddenField(**options)

	

a field that accepts, but does not emit. It is useful for uniqueness checked and
more. Combine this with a row parse and check the complete row.

StringField

	
class data-migrator.models.StringField(**options)

	

a field that accepts the column to be string.

NullStringField

	
class data-migrator.models.NullStringField(**options)

	

a field that accepts the column to be string and can also be None, which is not
the same as empty string (“”).

UUIDField

	
class data-migrator.models.UUIDField(**options)

	

a field that generates a str(uuid.uuid4()).

NullField

	
class data-migrator.models.NullField(**options)

	

a field that generates None.

JSONField

	
class data-migrator.models.JSONField(**options)

	

a field that takes the values and spits out a JSON encoding string. Great for
maps and lists to be stored in a string like field.

MappingField

	
class data-migrator.models.MappingField(data_map={}, as_json=False, **options)

	

a field that takes the values translates these according to a map. Great for
identity column replacements. If needed output can be translated as json, for
example if the map returns lists.

MappingField has two extra arguments:

	
MappingField.data_map

	The data_map needed to translate. Note the fields returns default
if it is not able to map the key

	
MappingField.as_json

	If True, the field will be output as json encoded. Default is False.

Contributor Code of Conduct

As contributors and maintainers of these projects, and in the interest of
fostering an open and welcoming community, we pledge to respect all people who
contribute through reporting issues, posting feature requests, updating
documentation, submitting pull requests or patches, and other activities.

We are committed to making participation in these projects a harassment-free
experience for everyone, regardless of level of experience, gender, gender
identity and expression, sexual orientation, disability, personal appearance,
body size, race, ethnicity, age, religion, or nationality.

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery

	Personal attacks

	Trolling or insulting/derogatory comments

	Public or private harassment

	Publishing other’s private information, such as physical or electronic
addresses, without explicit permission

	Other unethical or unprofessional conduct.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct. By adopting this Code of Conduct,
project maintainers commit themselves to fairly and consistently applying these
principles to every aspect of managing this project. Project maintainers who do
not follow or enforce the Code of Conduct may be permanently removed from the
project team.

This code of conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community.

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by opening an issue or contacting one or more of the project maintainers.

This Code of Conduct is copied from PyPA [https://www.pypa.io/en/latest/code-of-conduct/].
and is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.2.0
available at http://contributor-covenant.org/version/1/2/0/.

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V

A

 	
 	as_json (data-migrator.models.MappingField attribute)

B

 	
 	BooleanField (class in data-migrator.models)

C

 	
 	creation_order (Field attribute)

D

 	
 	data_map (data-migrator.models.MappingField attribute)

 	default (Field attribute)

 	
 	drop_if_none (data-migrator.models.Meta attribute)

 	drop_non_unique (data-migrator.models.Meta attribute)

E

 	
 	emit() (data-migrator.models.Model method)

 	
 	emitter (data-migrator.models.Meta attribute)

F

 	
 	fail_non_unique (data-migrator.models.Meta attribute)

 	
 	fail_non_validated (data-migrator.models.Meta attribute)

 	file_name (data-migrator.models.Meta attribute)

H

 	
 	HiddenField (class in data-migrator.models)

I

 	
 	IntField (class in data-migrator.models)

J

 	
 	JSONField (class in data-migrator.models)

M

 	
 	manager (data-migrator.models.Meta attribute)

 	
 	MappingField (class in data-migrator.models)

 	max_length (Field attribute)

N

 	
 	name (Field attribute)

 	null (Field attribute)

 	
 	NullField (class in data-migrator.models)

 	NullIntField (class in data-migrator.models)

 	NullStringField (class in data-migrator.models)

O

 	
 	objects (data-migrator.models.Model attribute)

P

 	
 	parse (Field attribute)

 	
 	pos (Field attribute)

 	prefix (data-migrator.models.Meta attribute)

R

 	
 	remark (data-migrator.models.Meta attribute)

 	
 	replace (Field attribute), [1]

S

 	
 	save() (data-migrator.models.Model method)

 	
 	scan() (data-migrator.models.Model method)

 	StringField (class in data-migrator.models)

T

 	
 	table_name (data-migrator.models.Meta attribute)

U

 	
 	unique (Field attribute)

 	
 	UUIDField (class in data-migrator.models)

V

 	
 	validate (Field attribute)

 	
 	validate_output (Field attribute)

 _static/comment-bright.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment-close.png

nav.xhtml

 Table of Contents

 		Welcome to data-migrator'!

 		Introduction

 		Example

 		Installation

 		Using pip (or ...)

 		Using a Source Distribution

 		Using the Github Repository

 		Tutorial

 		Getting Started

 		Concepts

 		The Scan Emit Loop

 		API Reference

 		Model class reference

 		Attributes

 		Methods

 		Meta class reference

 		Field options

 		Model field reference

 		Field options

 		Field types

 		Contributor Code of Conduct

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

